Позитронно эмиссионная томография пэт сущность метода

Что обнаруживает ПЭТ КТ

Прежде всего, позитронно-эмиссионная томография назначается для диагностики пациентам, которые подозреваются в наличии злокачественной опухоли, а другие диагностические методы не могут определить, откуда возникла первичная вспышка заболевания.

  • Кроме того, ПЭТ-КТ тестирование позволяет проводить раннюю диагностику рака, а также различать злокачественные и доброкачественные состояния.
  • Позитронно-эмиссионная томография назначается пациентам после лечения злокачественной опухоли, поскольку благодаря ей врач может определить, была ли операция выполнена полностью.
  • Также можно выяснить, дает ли применяемое медикаментозное лечение, то есть химиотерапия хорошие результаты.
  • ПЭТ также назначается пациентам, которым необходима тщательная оценка тяжести неопластического заболевания, благодаря чему в конкретном случае можно применить наиболее оптимальный метод лечения.
  • Позитронно-эмиссионная томография может оценить возможный рецидив заболевания после того, как лечение уже завершено.

Исследование ПЭТ КТ также используется в кардиологии, так как позволяет оценить жизнеспособность миокарда и кровотока, в неврологии,  для диагностики ишемических изменений в головном мозге,  опухоли мозга или при поиске эпилептических очагов.

Изображения пациентов с онкологией обычно выполняются для:

  • характеристики подозрительного процесса (злокачественного или доброкачественного),
  • определения удобного места для проведения биопсии,
  • определения стадии заболевания и определения размера и инфильтрации опухоли (Т) M),
  • с целью определения поля излучения,
  • для контроля реакции на лечение,
  • для последующего наблюдения после лечения,
  •  при подозрении на рецидив.

Иногда обследование выполняется при широко распространенном злокачественном процессе, но неизвестно, где будут обнаружены метастазы, в таком случае результаты тестов не являются окончательными относительно происхождения метастазов.

Также возможно проводить ПЭТ-КТ-исследование с ФДГ в не онкологических случаях, например, для исследования воспалительных или инфекционных процессов и для мониторинга лечения в этих случаях.

По физическим и техническим причинам разрешение ПЭТ ограничено повреждениями 0,5-1,0 см в диаметре и зависит от способности патологического процесса поглощать радиоактивный материал. Известно, что различные типы рака поглощают вещество с различной интенсивностью. Например, в то время как меланомы и лимфома обычно проявляют очень сильное поглощение, другие раковые заболевания (такие как рак почек, низкодифференцированная лимфома, бронхоальвеолярная клеточная карцинома легкого, карциномы желудочно-кишечного тракта) редко принимают ФДГ, поэтому малое поглощение вещества при обследовании не обязательно является доброкачественным процессом.

Позитронно эмиссионная томография пэт сущность метода

Другим ограничением диагностики CT-PET является количество ионизирующего излучения, которому подвергаются испытуемые — пожилые пациенты подвергаются воздействию доз облучения в диапазоне 12-27 милликюри.

История

В конце 1950-х годов Дэвид Э. Кул, Люк Чепмен и Рой Эдвардс разработали концепт эмиссионной томографии. Позже их работа привела к проектированию и созданию нескольких томографических инструментов в университете Пенсильвании. В 1975 методы томографического исследования доработали Майкл Тер-Погосян и его сотрудники Дж. Эуджен-Робинсон и К. Шарп Кук[1].

Показания для позитронно-эмиссионного исследования

  • Доброкачественные и злокачественные новообразования головы и шеи (с определением типа процесса, выявлением регионарных и отдаленных метастазов, рецидива опухоли)
  • Опухоли щитовидной железы
  • Рак легкого
  • Опухоли молочной железы
  • Злокачественные опухоли пищевода, желудка, толстого кишечника, поджелудочной железы (с определением стадии заболевания, оценкой эффективности лечения, ранним выявлением рецидива)
  • Опухоли кожи (меланома)
  • Новообразования костей и мягких тканей
  • Опухоли мочеполовой системы
  • Новообразования головного мозга: ПЭТ-КТ позволяет определить точную локализацию и размеры опухоли, степень ее злокачественности, оценить радикальность проведенной операции, эффективность лучевого и химиотерапевтического лечения
  • Наличие отдаленных метастазов при невыявленном первичном опухолевом процессе
  • Эпилепсия (с определением локализации эпилептического очага, оценкой эффективности возможного оперативного вмешательства)
  • Качественная диагностика сосудистых заболеваний головного мозга (ишемического , геморрагического инсульта, определением степени повреждения мозговой ткани, выраженности стенозов сонных артерий)
  • Уточнение диагноза при травмах головного мозга
  • Деменции (вследствие болезни Альцгеймера, Пика, Паркинсона, сосудистые деменции – дифференциальная диагностика с выявлением причины приобретенного слабоумия)
  • Заболевания сердечно – сосудистой системы – ишемическая болезнь сердца (ИБС), кардиомиопатии, врожденные пороки сердца у детей (позитронно-эмиссионная томография позволяет изучить микроциркуляцию и определить жизнеспособность сердечной мышцы, что очень важно при решении вопроса о хирургическом лечении).
  • Врач предлагает пациенту выпить определенное количество питьевой воды, сесть в кресло (на диван) и максимально расслабиться (при необходимости сходить в туалет)
  • Исследуемый приглашается для введения радиофармпрепарата и небольшой дозы мочегонного средства (обычно вещество вводится внутривенно в одну из вен стопы)
  • Отдых в течение 0,5-1,5 часов для равномерного распределения введенного препарата по организму
  • После отдыха и опорожнения мочевого пузыря пациент приглашается на сканирование, которое продолжается 20-40 минут (исследуемый лежит на спине, на диагностической кровати, ПЭТ сканер выполняет исследование в соответствии с заданными параметрами)
  • После окончания исследования пациент поднимается и направляется в комнату ожидания, где ждет информации о завершении исследования и времени получения заключения о его результатах.

Ни один диагностический метод не может обеспечить такой точной и быстрой диагностики, как позитронно-эмиссионная томография в сочетании с компьютерной томографией – ПЭТ-КТ. Крупнейшие медицинские учреждения зарубежных стран давно применяют этот эффективный и безопасный метод обследования всего организма.

Если говорить о странах бывшего СССР, то около 20 ПЭТ-КТ сканеров есть в России (В Москве, Санкт-Петербурге, Челябинске, Магнитогорске, Тюмени, Екатеринбурге, Воронеже, Уфе, Курске, Орле, Тамбове, Липецке, Белгороде), 2 центра ядерной медицины есть в Киеве (Украина), 1 центр ПЭТ-КТ появился в конце 2015 года и в Беларуси на базе РНПЦ онкологии (запись по тел. 375 (17) 265 57 60).

Для проведения диагностики пациенту назначается изотоп, он должен быть короткоживущим радиоизотопом, период полувыведения которого составляет от нескольких минут до нескольких часов. Обычно для этой цели используется глюкозный радиоизотоп -ФДГ.Это вещество вводится пациенту внутривенно и концентрируется там, где есть метаболически активные ткани, т. е.

ткани, которые в ней больше всего нуждаются.Пациент получает инъекцию радиоактивного материала в дозе около 10 милликюри, отдыхая примерно час, так чтобы маркированный сахар входил не в активные мышцы, а в патологические процессы. Диабетики обычно проходят тест на уровень сахара в крови со значениями 180 мг / дл и более. КТ-сканирование выполняется примерно через час после инъекции и сразу после этого проводится ПЭТ-тест.

Раковые клетки являются поглощающей глюкозу тканью, и именно они накапливает наибольшее количество изотопа, которое видно во время обследования, и, следовательно, врач может правильно интерпретировать результат после проведения диагностики.

После процедуры ПЭТ пациент может  отправиться домой. Однако, поскольку радиоактивный материал остается в теле в течение примерно 12 часов, следует ограничить контакт с беременными женщинами и младенцами в течение этого времени. Следует пить много жидкости, чтобы помочь вымыть изотоп. Как правило, все радиоактивные вещества покидают организм через два дня.

Стоимость исследования ПЭТ-КТ составляет примерно 1300-1500 долларов в Израиле в зависимости от клиники, где оно выполняется. В России цена обследования колеблется от 40 000 до 50 000 рублей.

Позитронно-эмиссионная томография ПЭТ в частности проводится для выявления онкопатологий головного мозга, желудочно-кишечного тракта, печени и желчного пузыря, изучения состояния лимфатических узлов.

Исследование выполняется в следующих случаях:

  • поиск новообразований и оценка их распространения;
  • мониторинг с помощью сканирования первичного очага опухоли и метастазов;
  • поиск агрессивного участка новообразования для взятия биопсии;
  • исследование проходимости коронарных артерий и тканей сердца после инфаркта миокарда;
  • планирование терапии и оценка ее эффективности;
  • в психиатрии и неврологии сканированием ПЭТ диагностируются рассеянный склероз, болезни Альцгеймера, Паркинсона.

Если опухоль размером хотя бы 5-7 мм, то на основе позитронно-эмиссионной томографии можно поставить диагноз. Процедура позволяет выявить наличие или отсутствие опухоли головного мозга, оценить, насколько он поврежден после инсульта. ПЭТ КТ проводится при нарушениях памяти и судорогах, когда иным способом выявить причину невозможно.

Как изготавливают радиофармпрепараты

физиков, радиохимиков, химиков-аналитиков, врачей. Синтез радиофармпрепарата в лаборатории осуществляется индивидуально для каждого исследуемого. Кроме того, для диагностики различных органов и тканей используются различные изотопы. С помощью позитронно-эмиссионной томографии можно изучать метаболические процессы, происходящие в клетках мозга, миокарда, точно различать опухолевую ткань и метастазы в любом месте организма. Чаще всего используют такие изотопы, как 18 F , 11 C , 13 N и 15 O (период полураспада у них составляет 109, 20, 10 и 2 минуты соответственно).

Потенциал ПЭТ в значительной степени определяется арсеналом доступных меченых соединений — радиофармпрепаратов (РФП). Именно выбор подходящего РФП позволяет изучать с помощью ПЭТ такие разные процессы, как метаболизм, транспорт веществ, лиганд-рецепторные взаимодействия, экспрессию генов и т. д. Использование РФП, относящихся к различным классам биологически активных соединений, делает ПЭТ достаточно универсальным инструментом современной медицины.

Фтор-18 обладает оптимальными характеристиками для использования в ПЭТ: наибольшим периодом полураспада и наименьшей энергией излучения. С одной стороны, относительно небольшой период полураспада фтора-18 позволяет получать ПЭТ-изображения высокой контрастности при низкой дозовой нагрузке на пациентов.

Позитронно эмиссионная томография пэт сущность метода

Низкая энергия позитронного излучения обеспечивает высокое пространственное разрешение ПЭТ-изображений. С другой стороны, период полураспада фтора-18 достаточно велик, чтобы обеспечить возможность транспортировки РФП на основе фтора-18 из централизованного места производства в клиники и институты, имеющие ПЭТ-сканеры (т. н. концепция сателлитов), а также расширить временны́е границы ПЭТ-исследований и синтеза РФП.

ПЭТ-сканирование с использованием фтордезоксиглюкозы (ФДГ-ПЭТ) широко используется в клинической онкологии. Этот трассер представляет собой аналог глюкозы, который поглощается клетками, использующими глюкозу, и фосфорилируется гексокиназой (чья митохондриальная форма значительно повышается при быстрорастущих злокачественных опухолях).

Обычная доза ФДГ, используемая при онкологическом сканировании, создаёт эффективную дозу облучения 14 мЗв при однократном применении. Поскольку для следующего этапа метаболизма глюкозы во всех клетках необходим атом кислорода, который заменён фтором-18 для синтеза ФДГ, дальнейших реакций с ФДГ не происходит.

Кроме того, большинство тканей (за исключением печени и почек) не могут удалить фосфат, добавленный гексокиназой. Это означает, что ФДГ задерживается в любой клетке, которая его поглощает, пока она не распадается, поскольку фосфорилированные сахара из-за их ионного заряда не могут выйти из клетки. Это приводит к интенсивному радиоактивному мечению тканей с высоким поглощением глюкозы, таких как мозг, печень и большинство видов рака.

Побочные эффекты и противопоказания ПЭТ

ПЭТ-сканирование, как и любое другое исследование с использованием ионизирующего излучения, связано только с принятием дозы такого облучения организмом человека. Поскольку этот вид диагностики всегда назначается по строго определенным серьезным показаниям, нет смысла беспокоиться о дозе облучения, потому что, во-первых, она не будет большой, а во-вторых, благодаря этому исследованию здоровье и жизнь могут быть сохранены. Тем не менее, противопоказанием для обследования является беременность и грудное вскармливание.

ПЭТ обследование помогает выявить три основных биохимических процесса, которые особенно интенсифицированы в раковых тканях, а именно повышенная потребность в глюкозе, синтез белков и нуклеиновых кислот (ДНК). В клинической деятельности чаще всего оценивается глюкозный метаболизм. Метка, используемая в таких случаях, представляет собой 18FDG — молекулу глюкозы со встроенным атомом радиоактивного фтора.

  • Оценку, являются ли неопластические изменения доброкачественными или злокачественными;
  • Оценку степени неопластических поражений — часто гораздо более чувствительной, чем другие диагностические методы;
  • Обнаружение метастазов;
  • Оценку прогресса лечения (особенно, например, химиотерапия ).

До недавнего времени обследования в онкологии были основаны на КТ и МРТ-сканировании, которые обеспечивают анатомическую информацию. Технология ПЭТ, разработанная в течение последних нескольких десятилетий, добавила функциональный аспект к визуализации, который позволяет не только выявлять раковые процессы и оценивать активность результатов, но также дифференцировать физиологические процессы для патологий.

Существует физиологическая абсорбция ФДГ в органах, которые используют сахар, таких как мозг, сердце (рецептор зависит от поста перед тестом), печень, пищеварительная система, скелетная мышца, коричневая жировая ткань, щитовидная железа и репродуктивная система. Как упоминалось выше, метаболические клетки, такие как раковые и иммунные, нуждаются в большом количестве сахара и, следовательно, получают большее количество ФДГ.

Устройство

Схематический вид блока детектора и кольца ПЭТ-сканера

Схематический вид блока детектора и кольца ПЭТ-сканера

При аннигиляции позитронов с электронами, находящимися в тканях организма, почти всегда возникают два гамма-кванта. Большинство позитронов в ткани очень быстро термализуются (теряют энергию) и аннигилируют с электронами среды, уже находясь в покое, поэтому образующиеся аннигиляционные гамма-кванты имеют нулевой суммарный импульс — иными словами, они разлетаются строго по одной прямой в разные стороны и имеют одинаковую энергию 511 кэВ.

Таким образом, если в двух подходящих детекторах гамма-квантов, включенных по схеме совпадений, одновременно поглощаются гамма-кванты с энергиями 511 кэВ, то следует ожидать, что точка аннигиляции находится на прямой, соединяющей эти два детектора, — на так называемой линии отклика. Используя большой набор детекторов, расположенных вокруг исследуемого объекта (или перемещая пару детекторов вокруг объекта), можно построить в пространстве множество таких прямых.

Компания Siemens AG в своих ПЭТ/КТ устройствах применяет сцинтилляционные детекторы на основе монокристаллов оксиортосиликата лютеция (Lu2SiO5, LSO).

Дозовая нагрузка

ПЭТ/КТ-система с 16-срезным КТ; потолочное устройство представляет собой инъекционный насос для контрастного вещества КТ

ПЭТ/КТ-система с 16-срезным КТ; потолочное устройство представляет собой инъекционный насос для контрастного вещества КТ

Хотя сканирование ПЭТ неинвазивно, но метод основан на применении ионизирующего излучения. Например, однократное использование 18F-FDG, который в настоящее время является стандартным средством для ПЭТ-нейровизуализации и лечения онкологических больных, в среднем создаёт эффективную дозу облучения 14 мЗв.

Для сравнения, дозировка излучения для других медицинских процедур составляет от 0,02 мЗв для рентгенограммы грудной клетки и 6,5—8 мЗв для КТ грудной клетки[2]. Среднестатистический член экипажа гражданского самолета подвергается воздействию 3 мЗв за год, а предельная максимальная рабочая доза для работников атомной энергетики может достигать 50 мЗв.

При сканировании ПЭТ-КТ облучение может быть значительным — около 23—26 мЗв (для 70 кг веса). С учётом массы (веса) тела будет увеличиваться доза вводимого радиофармпрепарата.

Другие виды ПЭТ-КТ

В настоящее время 18F-фтордезоксиглюкоза (18F-FDG) представляет собой преобладающий индикатор, используемый в ПЭТ-изображении. Однако при опухолях с низким поглощением глюкозы используют:

  • 11С -холин;
  • 11C-метионин;
  • 18F-дигидроксифенилаланин (18F-DOPA);
  • 68Ga-DOTA-NOC соматостатин.

Основным показанием для использования ПЭТ c холином остается оценка рецидива рака предстательной железы у пациентов, прошедших лечение (радикальная простатэктомия или внешняя лучевая лучевая терапия), у которых наблюдается повышение уровня сыворотки ПСА. Эффективность этого ПЭТ-КТ в данном случае, превосходит другие традиционные методы визуализации.

ПЭТ с метионином

11C-Метионин имеет основное преимущество в области визуализации головного мозга по сравнению с 18F-FDG: в нормальной ткани головного мозга почти отсутствует поглощение. С другой стороны, злокачественные поражения показывают значительно повышенное поглощение 11C-метионина. Кроме того, другие доброкачественные состояния, такие как фиброз, некроз или отек, которые обычно снижают специфичность ФДГ-ПЭТ, показывают относительно низкое поглощение метионина. По этим причинам ПЭТ с метионином преимущественно используется для обнаружения опухолей мозга.

При рецидивирующем заболевании метионин-ПЭТ имеет большое преимущество перед традиционными методами визуализации (включая МРТ), поскольку он может проводить надлежащий дифференциальный диагноз между злокачественными поражениями и другими непатологическими находками (например, инфекцией, инфарктом и кровоизлиянием) или другими изменениями мозговой ткани, вызванными предыдущим хирургическим вмешательством или дистанционной лучевой терапией.

Резюме

ПЭТ-КТ — отличный диагностический метод исследования, обеспечивающий оценку распространения опухоли, оценку ответа на лечение, оценку рецидивов и последующие наблюдения за пациентами с онкологией, особенно при выполнении соответствующих указаний, и при рассмотрении их ограничений. Его преимущества перед ПЭТ или КТ-тестированием включают:

  • точное позиционирование регионов с повышенным метаболизмом;
  • различие между повышенной физиологической и патологической абсорбцией;
  • комбинацию функционального и анатомического исследования с высоким разрешением;

80_pet_analisis

Библиография:

  1. Blodgett TM, Meltzer CC, Townsend DW. PET/CT: form and function. Radiology 2007;
  2. Wong TZ, Westhuizen GJ, Coleman RE. Positron emission tomography imaging of brain tumours. Neuroimaging Clin N Am. 2002;
  3. Groves AM, Win Th, Ben Haim S, et al. Non-[18F]FDG PET in clinical oncology. Lancet Oncol. 2007;
  4. Leskinen-Kallio S, Någren K, Lehikoinen P, et al. Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med. 1992;

10.08. 2018

Ссылки

Эта страница в последний раз была отредактирована 3 апреля 2019 в 14:13.